13 research outputs found

    Probabilistic Traversability Model for Risk-Aware Motion Planning in Off-Road Environments

    Full text link
    A key challenge in off-road navigation is that even visually similar terrains or ones from the same semantic class may have substantially different traction properties. Existing work typically assumes no wheel slip or uses the expected traction for motion planning, where the predicted trajectories provide a poor indication of the actual performance if the terrain traction has high uncertainty. In contrast, this work proposes to analyze terrain traversability with the empirical distribution of traction parameters in unicycle dynamics, which can be learned by a neural network in a self-supervised fashion. The probabilistic traction model leads to two risk-aware cost formulations that account for the worst-case expected cost and traction. To help the learned model generalize to unseen environment, terrains with features that lead to unreliable predictions are detected via a density estimator fit to the trained network's latent space and avoided via auxiliary penalties during planning. Simulation results demonstrate that the proposed approach outperforms existing work that assumes no slip or uses the expected traction in both navigation success rate and completion time. Furthermore, avoiding terrains with low density-based confidence score achieves up to 30% improvement in success rate when the learned traction model is used in a novel environment.Comment: To appear in IROS23. Video and code: https://github.com/mit-acl/mppi_numb

    EVORA: Deep Evidential Traversability Learning for Risk-Aware Off-Road Autonomy

    Full text link
    Traversing terrain with good traction is crucial for achieving fast off-road navigation. Instead of manually designing costs based on terrain features, existing methods learn terrain properties directly from data via self-supervision, but challenges remain to properly quantify and mitigate risks due to uncertainties in learned models. This work efficiently quantifies both aleatoric and epistemic uncertainties by learning discrete traction distributions and probability densities of the traction predictor's latent features. Leveraging evidential deep learning, we parameterize Dirichlet distributions with the network outputs and propose a novel uncertainty-aware squared Earth Mover's distance loss with a closed-form expression that improves learning accuracy and navigation performance. The proposed risk-aware planner simulates state trajectories with the worst-case expected traction to handle aleatoric uncertainty, and penalizes trajectories moving through terrain with high epistemic uncertainty. Our approach is extensively validated in simulation and on wheeled and quadruped robots, showing improved navigation performance compared to methods that assume no slip, assume the expected traction, or optimize for the worst-case expected cost.Comment: Under review. Journal extension for arXiv:2210.00153. Project website: https://xiaoyi-cai.github.io/evora

    Comparative cellular analysis of motor cortex in human, marmoset and mouse

    Get PDF
    The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties

    A Paternal Fish Oil Diet Preconception Modulates the Gut Microbiome and Attenuates Necrotizing Enterocolitis in Neonatal Mice

    No full text
    Epidemiology and animal studies suggest that a paternal history of toxicant exposure contributes to the developmental origins of health and disease. Using a mouse model, our laboratory previously reported that a paternal history of in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased his offspring’s risk of developing necrotizing enterocolitis (NEC). Additionally, our group and others have found that formula supplementation also increases the risk of NEC in both humans and mice. Our murine studies revealed that intervening with a paternal fish oil diet preconception eliminated the TCDD-associated outcomes that are risk factors for NEC (e.g., intrauterine growth restriction, delayed postnatal growth, and preterm birth). However, the efficacy of a paternal fish oil diet in eliminating the risk of disease development in his offspring was not investigated. Herein, reproductive-age male mice exposed to TCDD in utero were weaned to a standard or fish oil diet for one full cycle of spermatogenesis, then mated to age-matched unexposed females. Their offspring were randomized to a strict maternal milk diet or a supplemental formula diet from postnatal days 7–10. Offspring colon contents and intestines were collected to determine the onset of gut dysbiosis and NEC. We found that a paternal fish oil diet preconception reduced his offspring’s risk of toxicant-driven NEC, which was associated with a decrease in the relative abundance of the Firmicutes phylum, but an increase in the relative abundance of the Negativicutes class

    Summaries of Twenty Cases of Successful Private Antitrust Enforcement

    No full text
    corecore